MATHEMATICS

General Instructions:

1. All questions are compulsory.
2. The question paper consists of $\mathbf{1 6}$ questions divided into three sections A, B and C. Section A comprises of $\mathbf{6}$ questions of one marks each, Section B comprises of $\mathbf{8}$ questions of four marks each and Section C comprises of 2 questions of six marks each.
3. All questions in Section A are to be answered in one word, one sentence or as per the exact requirement of the question.

SECTION 'A'

Question numbers 1 to 6 carry 1 marks each.

1. For what value of x , the matrix $\left[\begin{array}{cc}5-x & x+1 \\ 2 & 4\end{array}\right]$ is singular.
2. If $\sin \left(\sin ^{-1} \frac{1}{5}+\cos ^{-1} x\right)=1$, then find the value of x.
3. If $A=\left[\begin{array}{cc}3 & 1 \\ 2 & -3\end{array}\right]$, then find $|\operatorname{adj} A|$.
4. If $\left(\begin{array}{cc}a+b & 2 \\ 5 & b\end{array}\right)=\left(\begin{array}{ll}6 & 5 \\ 2 & 2\end{array}\right)^{\prime}$, then find a.
5. Find the value of: $\quad \int 6^{x} d x$.
6. Evaluate: $\frac{d}{d x}|x|$

SECTION 'B'

Question numbers 7 to 14 carry 4 marks each.

7. Evaluate:

OR

$$
\int \frac{2 x-3}{\left(x^{2}-1\right)(2 x+3)} d x
$$

8. Show that $y=\log (1+x)-\frac{2 x}{2+x}, x>-1$, is an increasing function of x throughout its domain.
9. For the curve $y=4 x^{3}-2 x^{5}$, find all, the points at which the tangent passes through the origin.
10. Show that: $\quad \cos ^{-1} \frac{12}{13}+\sin ^{-1} \frac{3}{5}=\sin ^{-1} \frac{56}{65}$
OR

Solve for $\mathrm{x}: \quad \tan ^{-1} \frac{x-1}{x-2}+\tan ^{-1} \frac{x+1}{x+2}=\frac{\pi}{4}$
11. Using properties of determinants prove that:

$$
\left|\begin{array}{ccc}
3 a & -a+b & -a+c \\
-b+a & 3 b & -b+c \\
-c+a & -c+b & 3 c
\end{array}\right|=3(a+b+c)(a b+b c+c a)
$$

12. Differentiate $(x \cos x)^{x}+(x \sin x)^{\frac{1}{x}}$ with respect to x .
13. If $x=a(\cos t+t \sin t)$ and $y=a(\sin t-t \cos t)$, find $\frac{d^{2} y}{d x^{2}}$
14. Find the value of ' a ' for which the function f is defined as

$$
f(x)=\left\{\begin{array}{l}
a \sin \frac{\pi}{2}(x+1), x \leq 0 \\
\frac{\tan x-\sin x}{x^{3}}, x>0
\end{array}\right.
$$

is continuous at $\mathrm{x}=0$.

SECTION 'C’

Question numbers 15 to 16 carry 6 marks each.
15. Gaurav purchases 3 pens, 2 bags and 1 instrument box and pays $₹ 41$. From the same shop, Dheeraj purchases 2 pens, 1 bag and 2 instrument boxes and pay ₹ 29, while Ankur purchases 2 pens, 2 bags and 2 instrument boxes and pay ₹ 44 . Translate the problem into a system of equations. Solve the system of equations by matrix method and hence find the cost of 1 pen, 1 bag and 1 instrument box. Write two uses of instrument box.
16. Evaluate:

$$
\int \frac{1}{\sin ^{4} x+\sin ^{2} x \cos ^{2} x+\cos ^{4} x} d x
$$

Empouering

 SIKSHA VIKASH171, D. D Complex-II, Sundarpur R. G Baruah Road, Near NEEPCO, Guwahati-05 www.sikshavikash.in Call: 94018-18425

